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Learning multiplane images from single

views with self-supervision

Supplementary Material

Neural network architecture

The architecture of our neural network is illustrated in Fig. 1. We use intermediate depth

supervision in a similar way as in [2], but regressing the depth with the AdaBins [1] strategy.

From AdaBins, we use only the main idea of splitting the depth into a set of bins, where the

final depth map is regressed with Equation (3) from [1], considering all bins as a uniform

grid. Note that the intermediate depth supervision is used with the only purpose of helping

the network to learn to split the scene into D layers, which represent the depth bins in our

intermediate supervision. The intermediate depth predictions are not used during inference.

In our experiments, we use D = 32, in a similar way to [4].

EfficientNet-B5 + + + +

block6

block4

block3

block2

Input

Image

Output

MPI

Intermediate depth supervision

top_activation

Conv 1×1 Upsampling 2×2 Depthwise Conv 3×3

Eq. 2

Figure 1: Network architecture used to implement the function fθ in our method.

Training details

In this part, we show some additional training details that could help in replicating our

method. During our self-supervised training approach, we generated target viewpoints ran-

domly. For this, we assume a random camera movement, considering pan and tilt with

random values in the interval of [−5,5] degrees. We also generated camera translations

considering random values in normalized coordinates in the interval of [−0.4,0.4] for (x,y)
coordinates (w.r.t. the image plane) and [−0.1,0.1] for (z,) coordinate (movement perpen-

dicular to the image plane). To illustrate this process, we included some samples from the

training set of Places II dataset in Fig. 2.

© 2021. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
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Is Ds I′t D′
t Mask

Figure 2: Training samples from Places II dataset with our randomly generated target views.

Additional ablation results

We show in Table 1 an extended version of Table 3 from the main paper. In this case, we

present the loss coefficient values used in each experiment, with some additional training

strategies. For instance, we trained our model only with depth supervision, with and with-

out intermediate depth supervision (first two rows). We can see without intermediate depth

supervision, our model has very high LPIPS metric, which means that the overall quality of

the generated views are poor. Note that for Table 1 we trained our models for 500k iterations

due to our limited computational resources.

From Table 2, we can also observe that with higher coefficient values in β and γ , the

SSIM and PSNR metrics decrease, but the LPIPS metric is improved. In a practical point of

view, the general visual quality of the results with higher VGG and Style losses improves,

but the more classical metrics (SSIM and PSNR) get worse. In this experiment, we trained

our models longer, for about 5M iterations.

Additional qualitative results

We provide a qualitative comparison between our method, Single-View Synthesis and 3D-

Photography on Fig. 3. All the images shown are from the RealEstate10K test set considering

source and target frames are 10 frames apart. It is important to stress that our model was

trained on Places II using self-supervision from a single image, while Single-View Synthesis

was trained with image pairs from RealEstate10K and 3D-Photograph uses multiple views

during inference to estimate depth.
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Training strategy Validation on RE10K

Ldepth Lpix Lvgg(β ) Lstyle(γ) Inverse proj. Cyclic SSIM ↑ PSNR ↑ LPIPS ↓

1.0⋆ 0.750 17.153 0.357

1.0 0.734 17.699 0.237

1.0 0.758 19.349 0.280

1.0 1.0 0.760 19.473 0.215

1.0 10.0 0.802 20.341 0.265

1.0 1.0 0.01 0.752 19.332 0.195

1.0 1.0 0.01 0.0001 0.735 18.748 0.183

1.0 1.0 0.01 0.0001 X 0.761 19.556 0.182

1.0 1.0 0.01 0.0001 X 0.765 19.773 0.182

Table 1: Ablation study considering different training strategies in our method. In ⋆, inter-

mediate depth supervision was not used during training.

Training strategy Validation on RE10K

Ldepth Lpix Lvgg(β ) Lstyle(γ) Inverse proj. Cyclic SSIM ↑ PSNR ↑ LPIPS ↓

1.0 1.0 0.01 0.0001 X 0.786 19.960 0.176

1.0 1.0 0.01 0.0001 X 0.788 20.032 0.179

1.0 1.0 0.1 0.01 X 0.778 19.623 0.164

Table 2: Comparison of inverse projection and cyclic training, also considering different

values for β and γ .

Source view Target view Ours Single-View Synthesis 3D-Photography

Figure 3: Qualitative results for our method compared with Single-View Synthesis [4] and

3D-Photography [3] on images from RealEstate10K.
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In Fig. 4, we included one example of MPI generated by our method from Places II. Note

that the produced MPI has learned transitions between layers, which helps our method to

produce smooth transitions between different views, as can be also noticed from our demon-

stration videos.

Misalignment problem on Mannequin Challenge

We show in Fig. 5 some examples of the the alignment problem between the target frame and

predictions made by our method and Single-View Synthesis [4]. As one may notice, even

though the predicts have good visual quality they do not align with the target frame provided

by the Mannequin Challenge dataset.
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Figure 4: Sample of an MPI produced by our method with D = 32.
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Source image Target image Our prediction Single-View Synthesis prediction

Figure 5: Examples of the misalignment problem on the Mannequin Challenge dataset. Grid

lines facilitate to visualize that target and predictions are not correctly aligned.


